The Curvelet Approach for Denoising in various Imaging Modalities using Different Shrinkage Rules
نویسندگان
چکیده
The images usually bring different kinds of noise in the process of receiving, coding and transmission. In this paper the Curvelet transform is used for de-noising of image. Two digital implementations of the Curvelet transform (a multiscale transform) viz the Unequally Spaced Fast Fourier Transform (USFFT) and the Wrapping Algorithm are used to de-noise images degraded by different types of noises such as Random, Gaussian, Salt and Pepper, Speckle and Poisson noise. This paper aims at the effect the Curvelet transform has in Curvelet shrinkage assuming different types of noise models. A signal to noise ratio as a measure of the quality of de-noising was preferred. The experimental results show that the conventional Curvelet shrinkage approach fails to remove Poisson noise in medical images.
منابع مشابه
The SURE-LET Approach for MR Brain Image Denoising Using Different Shrinkage Rules
SURE-LET Approach is used for reducing or removing noise in brain Magnetic Resonance Images (MRI). Removing or reducing noise is an active research area in image processing. Rician noise is the dominant noise in MRIs. Due to this type of noise, the abnormal tissue (cancerous tissue) may be misclassified as normal tissue and introduces bias into MRI measurements that can have significant impact ...
متن کاملsUre-let approach for Mr Brain Image Denoising Using Different shrinkage rules
SURE-LET Approach is used for reducing or removing noise in brain Magnetic Resonance Images (MRI). Removing or reducing noise is an active research area in image processing. Rician noise is the dominant noise in MRIs. Due to this type of noise, the abnormal tissue (cancerous tissue) may be misclassified as normal tissue and introduces bias into MRI measurements that can have significant impact ...
متن کاملAn Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملSecond Generation Curvelet Shrinkage Model Based Image Denoising
SECOND GENERATION CURVELET SHRINKAGE MODEL BASED IMAGE DENOISING B. Chinna Rao1 and M. Madhavi Latha2 1Department of ECE, R.K. College of Engineering, Vijaywada, A.P. India. E-mail: [email protected] 2Department of ECE, JNTU College of Engineering, Hyderabad, A.P. India. E-mail: [email protected] In this paper, a Second Generation based curvelet shrinkage is proposed for discontinuity...
متن کاملA Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
متن کامل